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Codes that calculate the trajectories of particles in complicated electromagnetic fields often
include spectral methods, which take advantage of the speed of FFTs to rapidly solve for the
fields. In this case, Hermite tricubic interpolation can be used to calculate the fields
between grid points, with spectral derivates used to determine the interpolation coeffi-
cients. This method is extremely accurate, and in the case of electrostatic fields produces
an energy conserving force when incorporated into a particle follower code.

Published by Elsevier Inc.
1. Introduction

When the electric or magnetic fields are known only on a discrete set of points, instead of as an analytical function, inter-
polation is essential for codes which solve for the trajectory of charged particles. There are many different techniques for
interpolation, with different advantages and disadvantages. For example, linear interpolation is fast and easy to implement,
but has discontinuous first derivatives; while the natural spline can be difficult to calculate, especially on large multidimen-
sional grids, but provides an interpolation which has continuous first and second derivatives (C2). The B-spline can be
calculated rapidly and provides a solution with continuous first and second derivatives, but necessitates smoothing so that
the B-spline is not a true interpolation (i.e., the interpolated function /(x) is not equal to the given knot values /i on qi,
/(qi) – /i).

The cubic Hermite spline provides a true interpolation that is fast, easy to use, and has continuous first derivatives (C1)
[9,12]. This scheme requires knowledge of both the function value, /i, and its derivative, @/i/@q. Numerical schemes exist to
define these derivatives when they are not known. In multidimensional applications the combinations of first derivatives
(such as o/ijk/@x@y and @/ijk/@x@y@z in 3 Cartesian dimensions) are also needed [12].

In many particle follower codes, the electric or magnetic fields are calculated using spectral or pseudo-spectral methods,
so that there is a priori knowledge that the data which needs to be interpreted is band-limited and effectively periodic. Then
the ideal interpolated function W(q) exists and is described by Fourier interpolation. Fourier interpolation can be calculated
either through an infinite sum of the sinc function multiplied by the sampling points, or by a finite sum of all of the correctly
phased trigonometric components, calculated from the FFT.

There are many numerical applications where neither of these Fourier interpretation methods are practical. In most cases
it is prohibitively slow to sum over all the trigonometric components, especially in large multidimensional arrays. For sinc
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interpolation, the infinite sum must be cut off at some point, so there is a tradeoff between accuracy and numerical bulkiness
[13].

Despite the difficulty of using Fourier interpolation to find the value of a function at an arbitrary point, the derivatives of
the function, oW(qi)/@q can easily and quickly be calculated at the grid values, through Fourier differentiation, giving the nec-
essary set of derivatives @/i/@q for a cubic Hermite spline. Then the cubic Hermite spline is a true interpolation (/(qi) = /i)
with continuous first derivatives that accurately approximates the true Fourier interpolation W(q). Furthermore, the algo-
rithm is fast and easy to implement: the partial derivates are calculated rapidly through the FFT, and interpolation of an arbi-
trary point only involves summing over a small number of Hermite basis functions.

In Section 2, the algorithm is described in more detail for 3 Cartesian dimensions. Section 3 shows an example where the
method is used to follow the trajectory of a weakly magnetized ion in the complicated geometry of the Columbia Non-neu-
tral Torus (CNT) [21,19].

The algorithm presented here is in 3 Cartesian dimensions because of the application it was used for. The algorithm can
also be used in other numbers of dimensions and coordinate systems. For example, an algorithm has been reported in the
literature which uses spectral derivatives on the surface of a sphere to determine bicubic interpolation coefficients, with
applications to atmospheric models [3].

2. The algorithm in 3 Cartesian dimensions

2.1. Fourier differentiation

Assume that an equilibrium solver produces an equally spaced Cartesian grid of potential values /ijk. In order to imple-
ment the Hermite tricubic interpolation, it is necessary to know the set gijk

abc of eight nodes at each point, given by
gijk

000 ¼ /ijk;g
ijk
100 ¼ @/ijk=@x;gijk

110 ¼ @
2/ijk=@x@y, and gijk

111 ¼ @
3/ijk=@x@y@z, etc. These derivatives can be found easily using Fou-

rier differentiation.
For a code which uses a spectral method to calculate /ijk the ‘‘true” values of /(x,y,z) are given by Fourier interpolation.

The Fourier interpolation of / (shown in one dimension for simplicity) is defined as
/f ðqÞ ¼
1
N

XN=2�1

k¼�N=2

/k exp
2pikq
NDq

� �
: ð1Þ
Fourier interpolation itself is prohibitively slow to use in a particle follower code, but can be used to rapidly calculate the
nodes gijk

abc at each point. The derivative of Eq. (1) is:
@/ðqÞ
@q

¼ 2pi

N2Dq

XN=2�1

k¼�N=2

k/k exp
2pikq
NDq

� �" #
; ð2Þ

¼ 2pi

N2Dq

XN=2�1

k¼0

k/k exp
2pikq
NDq

� �
þ
XN�1

k¼N=2

ðk� NÞ/k exp
2piq
NDq

ðk� NÞ
� �( )

; ð3Þ
where Dq refers to the inter-grid spacing of the discrete points. At the discrete points the derivative is easily described in
terms of the IDFT:
@/n

@q
¼ 2pi

N2Dq

XN=2�1

k¼0

k/k exp
2pikn

N

� �
þ
XN�1

k¼N=2

ðk� NÞ/k exp
2pikn

N

� �" #
: ð4Þ
This method of Fourier differentiation can be used to find derivatives in three dimensions, simply by applying Eq. (4) along
each chord in the three dimensional grid. The method can be then be repeated, to find higher order derivatives such as @2 /ijk/
@x@y.

2.2. Hermite cubic interpolation

One dimensional Hermite interpolation methods are described in the literature [9,12], but will be briefly reviewed here.
Given two knots xi and xi+1, where the set of four nodes gi

0 ¼ f ðxiÞ;giþ1
0 ¼ f ðxiþ1Þ;gi

1 ¼ f 0ðxiÞ and giþ1
1 ¼ f 0ðxiþ1Þ are known, a

unique cubic polynomial interpolation exists [9]. This cubic polynomial can be found easily by use of the four Hermite car-
dinal functions, defined here as hp

aðxÞ, where a = 0, 1 and p = 0, 1. These functions are equal to 1 at one of the four nodes, and
are equal to 0 at the other three nodes:
h0
0ðx0Þ ¼ 1 dh0

0ðx0Þ=dx ¼ 0 h0
0ðx1Þ ¼ 0 dh0

0ðx1Þ=dx ¼ 0;

h0
1ðx0Þ ¼ 0 dh0

1ðx0Þ=dx ¼ 1 h0
1ðx1Þ ¼ 0 dh0

1ðx1Þ=dx ¼ 0;

h1
0ðx0Þ ¼ 0 dh1

0ðx0Þ=dx ¼ 0 h1
0ðx1Þ ¼ 1 dh1

0ðx1Þ=dx ¼ 0;

h1
1ðx0Þ ¼ 0 dh1

1ðx0Þ=dx ¼ 0 h1
1ðx1Þ ¼ 0 dh1

1ðx1Þ=dx ¼ 1:

ð5Þ
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For a pair of knots spaced a distance D apart, the cardinal functions are:
h0
0 ¼

2
D3 ðD=2þ qÞðq� DÞ2; ð6Þ

h1
0 ¼
�2q2

D3 ðq� 3D=2Þ; ð7Þ

h0
1 ¼

q
D2 ðq� DÞ2; ð8Þ

h1
1 ¼

q2

D2 ðq� DÞ: ð9Þ
These are plotted in Fig. 1. Then the Hermite interpolation of this function is found to be
fiðxÞ ¼
X1

a¼0

X1

p¼0

giþp
a hp

aðxÞ: ð10Þ
If a set of function values and first derivatives gi
a are known, then it is possible to perform Hermite interpolation over each

interval, and thus interpolate over the entire function. The interpolated function will be continuous and differentiable
everywhere.

The derivatives can be calculated using Fourier differentiation (Eq. (4)). With both the function values and derivatives
known, Hermite interpolation gives a rapid interpolation which approximates the Fourier interpolation.

Extending this method to three dimensions is fairly simple. Instead of interpolating between two knots where the first
derivatives are known, you interpolate within a cube of eight knots. On each of the eight knots of the cube the set of eight
nodes gijk

abc must be known, where gijk
000 ¼ /ijk;g

ijk
100 ¼ @/ijk=@x;gijk

110 ¼ @
2/ijk=@x@y, and gijk

111 ¼ @
3/ijk=@x@y@z, etc., for a total of 64

nodes. Only combinations of first derivatives are needed; no second derivatives in the same dimension, such as @2/ijk/@x2, are
needed for this interpolation scheme.

The Hermite cardinal functions in this cube are multiples of three one dimensional Hermite cardinal functions. For exam-
ple, the function G011

101ðx; y; zÞ ¼ h0
1ðxÞh

1
0ðyÞh

1
1ðzÞ defines a cube in the interval [x0,x1], [y0,y1], [z0,z1], which satisfies

@2G011
101ðx0; y1; z1Þ=@x@z ¼ 1. The other seven partial derivative combinations, represented by the nodes g011

abc , are equal to zero
at (x0,y1,z1) for the function G011

101ðx; y; zÞ. At every other corner point of the cube [x0,x1], [y0,y1], [z0,z1], all eight derivative
combinations of G011

101ðxyzÞ, represented by the nodes gplf
abc , equal zero. It can be quickly shown that Hermite interpolation ex-

tends to three dimensions in this manner by use of separation of variables.
Then, in any cube [xi,xi+1], [yj,yj+1], [zk,zk+1], where the set of 64 nodes is known, the Hermite tricubic interpolation is given

by:
fijkðx; y; zÞ ¼
X1

a¼0

X1

b¼0

X1

c¼0

X1

p¼0

X1

l¼0

X1

f¼0

gðiþpÞðjþlÞðkþf Þ
abc hp

aðxÞh
l
bðyÞh

f
cðzÞ: ð11Þ
If the set of eight nodes are known on a grid, gijk
abc , then this method may be used to define a function f(x,y,z) over the entire

grid, just as in the one dimensional case.
0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
h0
0

h0
1

h1
0

h1
1

Fig. 1. The set of four Hermite cubic polynomials [9].



Q.R. Marksteiner / Journal of Computational Physics 229 (2010) 6688–6695 6691
The interpolation scheme described here is similar to the one described by Lekien and Marsden [12]. The key differences
from [12] are that spectral derivatives are used to calculate the derivates, and the interpolation is calculated directly in terms
of the basis functions, which are each multiplied by the eight combinations of derivates at the eight adjacent nodes.

2.3. Proof of C1 continuity

The function f(x,y,z) is continuous and has continuous first derivatives. To see that this is true, consider the two adjacent
cubes V1 and V2, joined by the surface S in Fig. 2. Let fijk(x,y,z) be the Hermite interpolation in V1, and f(i+1)jk(x,y,z) be the
interpolation in V2, such that fijk(x,y,z) and f(i+1)jk(x,y,z) are each calculated according to the cardinal functions on their
respective eight knots, according to Eq. (11). Let the grid spacing be D in the x direction. All of the cardinal functions
Gplf

abcðx; y; zÞ of fijk(x,y,z) that describe nodes that are not on S must contain either the term h0
0ðxÞ or h0

1ðxÞ; these functions
go to zero on S. Thus, on S the function fijk(x,y,z) is described only in terms of the knots that are on S, which all contain either
h1

0ðxÞ or h1
1ðxÞ. Considering only the value fijk(x = x1+1,y,z), and not the derivative @/@x, all values but h1

0ðxÞ disappear:
fijkðx ¼ x1þ1; y; zÞ ¼
X1

b¼0

X1

c¼0

X1

l¼0

X1

f¼0

gðiþ1ÞðjþlÞðkþf Þ
0bc h1

0ðDÞh
l
bðyÞh

f
cðzÞ; ð12Þ
The same logic that led to Eq. (12) can be applied to describe the interpolation of f(i+1)jk(x,y,z) on S. All of the terms here in-
volve knots on S, and contain h0

0ðxÞ:
fðiþ1Þjkðx ¼ xiþ1; y; zÞ ¼
X1

b¼0

X1

c¼0

X1

l¼0

X1

f¼0

gðiþ1ÞðjþlÞðkþf Þ
0bc h0

0ð0Þh
l
bðyÞh

f
cðzÞ; ð13Þ
Then fijk(x = x1+1,y,z) = f(i+1)jk(x = x1+1,y,z), because h1
0ðDÞ ¼ h0

0ð0Þ ¼ 1, and all other terms in Eqs. (12) and (13) are the same.
Thus f(x,y,z), and any combination of derivatives in the y and z directions, are continuous in the entire volume of V1 and V2.

On the boundary S, the derivatives @
@x ½fijkðx; y; zÞ� will contain only h1

1ðxÞ:
d
dx
½fijkðx ¼ x1þ1; y; zÞ� ¼

X1

b¼0

X1

c¼0

X1

l¼0

X1

f¼0

gðiþ1ÞðjþlÞðkþf Þ
1bc h1

1ðDÞh
l
bðyÞh

f
cðzÞ: ð14Þ
Similarly, the derivatives d
dx ½fðiþ1Þjkðx; y; zÞ� are:
d
dx
½fðiþ1Þjkðx ¼ xiþ1; y; zÞ� ¼

X1

b¼0

X1

c¼0

X1

l¼0

X1

f¼0

gðiþ1ÞðjþlÞðkþf Þ
1bc h0

1ð0Þh
l
bðyÞh

f
cðzÞ: ð15Þ
So that @f/@x, and all possible y and z derivatives of @f/@x are also continuous in the entire volume of V1 and V2. Thus the
Hermite interpolation, using fijk(x,y,z) in V1 and f(i+1)jk(x,y,z) in V2 has continuous values, first derivatives, and combinations
of first derivatives.

This can be extended to Hermite interpolation on an entire grid, where the set of nodes gijk
abc is known. The Hermite inter-

polation method, as describes above, will have continuous values and first derivatives everywhere. C1 continuity has also
been proven for three dimensional Hermite tricubic interpolation, where the higher derivatives are calculated to ensure
maximum smoothness, instead of being spectrally accurate [12].

This type of interpolation is useful for describing conservative forces, such as electrostatic fields. By performing Hermite
interpolation on /, and then calculating the electric field by analytically differentiating the interpolation, it is possible to de-
fine an electric field that is conservative, continuous, and spectrally accurate.

2.4. Comparison of methods

A simple numerical experiment, identical to the one described by Boyd [13], was done to compare the interpolation meth-
od described in this paper with other common interpolation methods. The different interpolation methods were used to
Fig. 2. Two adjacent Hermite interpolation cubes. Function values and derivatives are continuous at the boundary between V1 and V2.
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interpolate the function cos (kx), and the maximum error was found from varying both the location of the knots (always
using an evenly spaced grid), and the interpolated point between the knots. For simplicity, this comparison was done in
one dimension. Like in Boyd [13], the cosine function is interpolated for different values of k, and the dimensionless wave-
number j = k/klimit is used, where klimit is the Nyquist wavenumber. The results are shown in the chart below.
j = 1/16
 j = 1/8
 j = 1/4
 j = 1/2
Hermite FFT
 3.87E�6
 6.18E�5
 9.81E�4
 0.0152

Hermite FD
 1.23E�4
 1.01E�3
 9.25E�3
 0.116

Polynomial, M = 1
 4.72E�4
 3.75E�3
 0.0293
 0.212

Polynomial, M = 2
 3.40E�6
 1.07E�4
 3.25E�3
 0.0829

Polynomial, M = 3
 2.73E�8
 3.41E�6
 3.99E�4
 0.0354

Polynomial, M = 4
 2.29E�10
 1.14E�7
 5.13E�5
 0.0158

Euler, M = 4
 –
 0.0135
 0.0127
 0.0205

Euler, M = 8
 –
 6.63E�4
 6.25E�4
 4.81E�3

Euler, M = 12
 –
 3.53E�5
 3.33E�5
 7.32E�4
The Polynomial and Euler methods are the ones described by Boyd [13]. The Hermite FFT and the Hermite finite difference
(Hermite FD) methods both use Hermite polynomials to interpolate the cosine function. For the Hermite FFT method (which
is the one dimensional version of the method described in this paper), the exact spectral derivative is used for the Hermite
interpolating polynomial. The Hermite FD method instead uses a three point finite difference estimation of the derivative.
The Hermite FD method is a one dimensional scheme similar to the three dimensional scheme described by Lekien and Mars-
den [12].

The Hermite FFT method is about 10 times more spectrally accurate than the Hermite FD method. This is not surprising,
because the Hermite FFT method uses the exact spectral derivative while the Hermite FD method uses an approximation.

The Hermite FFT method is comparable in accuracy to the Polynomial M = 2 and the Euler M = 8 methods. However, if the
spectral derivatives are already known, the Hermite interpolation is much faster than either of these two methods, because it
only involves the addition of four polynomials of fourth degree, with known weights. In addition, the Hermite method has C1

continuity.
Thus the Hermite FFT interpolation scheme is useful when spectral accuracy is desired, and many interpolations will be

done on a single grid, so that the added cost of calculating the spectral derivatives is acceptable.

3. Implementation in particle follower code

3.1. Description of problem

The Columbia Non-neutral Torus is a magnetic stellarator trap used to confine pure electron [6] and electron-ion [15]
plasmas. The magnetic coils of CNT are a simple set of four circular, planar coils; but the magnetic geometry is very compli-
cated [20]. For ion-electron plasmas, the ratio of ions to electrons is typically Ni/Ne 6 0.1, so that there are always compli-
cated electric fields present in the machine. The electron density and electrostatic potential of the plasma equilibrium are
measured along a line using particle flux probes [7], and then the equilibrium and electrostatic potential is numerically
reconstructed in the remaining volume of plasma [11], using a Poisson–Boltzmann solver (PBS).

The problem here is to integrate the motion of a test ion particle in the reconstructed equilibria of CNT. The ions are
weakly magnetized, so that the drift approximations are inappropriate [4]. Instead we integrate the ion motion directly using
the Lorentz force law [5]:
dp
dt
¼ q Eþ v � Bð Þ: ð16Þ
Because of the simple coil geometry in CNT, an analytical solution to the magnetic field exists [21]. On the other hand, the
numerically reconstructed equilibria of CNT solves for the electrostatic potential on a Cartesian grid, /ijk. After this, an inter-
polation scheme is needed to calculate the electric field at an arbitrary point (x,y,z) that is not on the grid. The ion must be
followed accurately for a very large number of steps, therefore it is necessary to develop an accurate interpolation scheme for
the electric field.

In particular, it is necessary for the interpolated electric field E
!
ðx; y; zÞ to be a conservative force. This is best accomplished

by introducing the electrostatic potential /, with E
!
¼ �r/. By interpolating / rather than E

!
, then calculating E

!
by analyt-

ically calculating E
!
¼ �r/ the electric field will be continuous and conservative, as long as the interpolated potential /

(x,y,z) is smooth (C1). The continuity of the electric field will increase the accuracy of numerical integration methods such
as the adaptive Runge–Kutta or Adams–Moulton method.

The PBS code which calculates the potential uses a pseudo-spectral method [18,10], so that the solutions to the electro-
static potential can be interpolated using the algorithm described in this paper. The Poisson–Boltzmann solver solves the



Fig. 3. Two dimensional plot of the electrostatic voltage of CNT, in midplane of the x direction. (Left): plot in real space (Right): plot in j space.
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electrostatic potential of CNT on a three dimensional grid that is 128 � 128 � 128 in size. The grid points are evenly spaced,
with each cube of grid points corresponding to a cube that is 1.28 cm on each side in the real CNT experiment. The values are
given in double precision.

Fig. 3 shows a two dimensional plot of the electrostatic voltage used in CNT, in the midplane of the device. On the left this
is shown in real space, with the y and z-axes labels in terms of grid points. On the right, this is shown in j space, with j =
k/klimit. Most of the spectral content of the three dimensional grid is contained in jjj < .1, with the spectral content below
�80 dB when jjj > 0.5. Because most of the spectral content is contained in low j values, adequate spectral accuracy is
achieved without Fourier augmentation of the grid. The interpolation scheme described here is very accurate, with a relative
error of �10�5 at producing results which are in agreement with the exact Fourier interpolation of the solutions of the PBS
code.

3.2. Computational cost

For this application, a cubic domain is used, where there are N = 128 elements on each side. A single FFT requires N logN
operations, and N2 of these are needed to take a single derivative over the entire domain. Because there are seven combina-
tions of first derivatives that need to be calculated, the total cost of calculating the derivatives is 7N3 logN. These values are
then stored in a 128 � 128 � 128 � 2 � 2 � 2 grid for use in the particle follower code.

For each individual interpolation, the computational cost is the cost of adding up 64 third or fourth degree polynomials.

3.3. Particle trajectories

The trajectory is calculated by integrating Eq. (16), using the analytical solution of the magnetic field, and the electric field
interpreted using the methods described in this paper. Eq. (16) is integrated using the adaptive Adams–Moulton method. The
code was benchmarked by solving the ion motion in an infinitely long Penning trap, where an analytical solution for the elec-
tric field [1] and the ion motion [14] is known. Excellent agreement was found with the analytical trajectories.

Fig. 4 shows the trajectory of an ion particle in CNT. A bouncing motion, similar to the motion of ions in a Penning trap,
can be seen. In each bounce, the ion moves through the complicated electric and magnetic fields and picks up 20–80 eV of
energy. The total energy of an ion as it goes through its trajectory can be calculated by summing the kinetic energy with the
electrostatic potential, where the electrostatic potential is calculated using the interpolation scheme describe in this paper. It
is found that even after 1099 bounces, which corresponds to 15 ms of ion motion in real time, the total ion energy is con-
served to an accuracy 6 � 10�4 eV, or a relative accuracy of about 10�5. There is no need to impose conservation of energy on
the ion as its motion in integrated, it is valid because the interpolated electric field is calculated as the exact (to double pre-
cision accuracy) derivative of the potential, which itself has C1 continuity.

The code was used to calculate ion trajectories, densities, and bounce times for a variety of experimental parameters in
the Columbia Non-neutral Torus [16]. A typical ion trajectory, which lasts for �2 ms, or over 115 ion bounces, takes about 4 s
to calculate on a standard PC.

4. Other applications of this algorithm

4.1. Converting to Boozer coordinates

For highly magnetized particles, such as electrons in CNT, magnetic coordinates are the more natural coordinate system
for particle trajectory calculation in stellarators [8,22,2]. Converting to magnetic coordinates involves application of the FFT



Fig. 4. Numerically integrated motion of Nþ2 in the reconstructed equilibria of a �200 V, 0.1 T plasma in the CNT geometry, along with a three dimensional
rendition of the last closed flux surface of the magnetic field. The ion is moving from the yellow to the black section of the curve.

6694 Q.R. Marksteiner / Journal of Computational Physics 229 (2010) 6688–6695
after integrating along a magnetic field line [8]. The interpolation technique described in this paper can be used to convert
scalar parameters that are on a Cartesian grid, such as the equilibrium results of the PBS code in CNT [11] to magnetic coor-
dinates, by providing an interpolation for values integrated along a magnetic field.

4.2. Self consistent beam trajectories

A class of codes exist which iterate between solving Poisson’s equation and calculating the trajectories of a number of
particles, in order to achieve self-consistency between the electrostatic boundaries and the electric field from the beam
[17]. These codes often use a gridded mesh, with a finite difference method of calculating the electric field. In some situations
the electric field can be calculated rapidly with a spectral method. Then, using the algorithm described in this paper, the par-
ticles can be followed rapidly and accurately.

5. Conclusion

A three dimensional interpolation scheme is proposed that is spectrally accurate, i.e., it accurately approximates the ideal
Fourier interpolation, and has continuous first derivatives. The interpolation is also fast: a set of first derivates can be calcu-
lated rapidly using the FFT, and these can be stored in memory. Then, for each interpolation that is needed, the 64 Hermite
basis functions are added together.

The interpolation scheme was tested by using it to calculate the electric field in a code that integrates the Lorentz force
equation in the complicated electric and magnetic fields of the Columbia Non-neutral Torus. It was found that the Hermite
interpolated voltages were almost identical to the Fourier interpolated voltages. It was also found that energy was very accu-
rately conserved in the calculated particle trajectories.
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